Written Examination in Time Series Analysis (B3) Spring 2016 2016-05-25 08.00-12.00

Bergsbrunnagatan 15, room2.

Lars Forsberg, Department of Statistics, Uppsala University

Allowed means of assistance:

1. Pen or **pencil** (recommended) and eraser

2. Calculators,

- (a) 'programmable' calculator, e.g. calculator with graphing functions is OK.
- (b) Calculators with blue-tooth are not allowed.
- (c) Calculators with access to internet are not allowed.
- (d) Calcuators with which it is possible to send and recieve messages of any kind are not allowed.
- 3. Physical (paper) dictionary (no electronic dictionary allowed).
 - (a) Dictionary must contain no notes of any kind.
 - (b) Each student must have his/her own dictionary. It is not allowed for students to pass a dictionary between them.

4. Ruler.

- 5. Collection of formulae and Statistical Tables named 'Collection of Formulae and Statistical Tables for the B2-Econometrics and B3-Time Series Analysis courses and exams', that the student brings to the exam location.
- 6. Please note that a collection of critical values for the Student's t, Normal, Chi-square and F-distributions is given in the Appendix of the 'Collection of Formulae and Statistical Tables for the B2-Econometrics and B3-Time Series Analysis courses and exams'.
- 7. Also note that the 'Test template', that should be used when performing tests, is given in the 'Collection of Formulae and Statistical Tables for the B2-Econometrics and B3-Time Series Analysis courses and exams'.

That is:

- 1. NO BOOK (except paper-dictionary) is allowed.
- 2. NO (student-written) notes are allowed.
- 3. NO other document than the one 'Collection of Formulae and Statistical Tables for Time Series Exam' is allowed.

Instructions: Please note the following:

- 1. Start with reading through the instructions!
- 2. Make sure you follow the instructions!
- 3. Start with reading through the exam.
- 4. You may write your solutions in Swedish or English.
- 5. Total score is **100** points
 - (a) If you want the ECTS grades, please indicate that on the cover page!
 - (b) For each task the maximum number of points is given within parenthesis, e.g. (16p in total).
 - (c) For each subtask the number of points is given within parenthesis, e.g. (2p)
- 6. All solutions must be on separate sheets. No solutions on the questionnaire! (If so, they will be disregarded.)
- 7. Make sure your solutions are: easy to read and easy to understand, that is:
 - (a) For each task that you solve, please start with a new sheet: after Task 1, start with a blank sheet for Task 2, etc.
 - (b) Write the *task number* at the top of each page, in the

Like:

- if you write it in the upper left corner, the staple will cover it, and there is no for way for the examinator to know if the text of that sheet belongs to the previous sub-task or what it is. The Examinators will not make any 'qualified guesses' of what is being displayed on any given page. It is the responsibility of the student to make sure that every task and sub-task is easily identifiable. Time Series Exam

(c) If you continue a sub-task on the next sheet of paper - indicate that at the top of the page - IN THE MIDDLE OF THE PAGE, like, for example:

......'Task 1B (cont.)'.....

(d) Please separate each subtask A, B etc with a horizontal line across the sheet

if they are on the same sheet of paper - that way it will be easy for the examinator to actually see where one subtask ends and next begins.

- (e) For examinator readability, it is highly recommended that you use a pencil, (and not a pen), which will allow you to erase and rewrite if you make a mistake. Crossed-over text and corrections using 'tipp-ex' will just cause blurriness and confusion to the examinator.
- (f) For examinator readability: Write clearly, that is, letters, mathematical/statistical symbols and numbers should be easy recognizable!! Do not underestimate the correlation between readability and points scored, that is, when readability goes to zero, points scored also goes to zero, no matter your intentions or wheather *you* can read it or not.
- (g) Also note that everything that you write will be taken at 'face value'. That is, for example, if you write β_1 the examinator will take that as a β_1 even though you may claim that it is given from the context it should be clear that you meant something else, like β_3 . Thus, given this example, writing β_1 , and that is not correct in that specific formula or statement, this will lead to subtraction of points, even if you will claim that it is just a typo, and that in another task or subtask, it is clear that you understand the issue.
- (h) Please put the sheets in order, that is first Task 1, and then Task 2 etc...
- 8. Please keep the questionaire.
- 9. Do well!

2016-05-25

Task 1

(20 points in total)

A) (2p) What is a stochastic process from a theoretical point of view? Explain using words, no formulae needed.

B) (6p) State the conditions for a stochastic process to be *covariance stationary*. For each condition, state that condition using formulae and also explain in words what it means.

To 'apply' the Box-Jenkins methodology, a nessecary condition is that the series in question is (at least) covariance stationary. If a process is *not* stationary, we need to transform it somehow to make it stationary before we can apply the Box-Jenkins methodology.

C) (6p) Given the process

$$Y_t = \alpha_0 + \alpha_1 t + \phi_1 Y_{t-1} + e_t,$$

for what values for the parameters α_0 , α_1 and ϕ_1 is this process *trend-stationary?* Given those values (that make the process trend stationary - suggest a *transformation* that will make the process covariance stationary.

D) (6p) Given the process

$$Y_t = \alpha_0 + \alpha_1 t + \phi_1 Y_{t-1} + e_t,$$

for what values for the parameters α_0 , α_1 and ϕ_1 is this process difference-stationary? Given those values (that make the process trend stationary - suggest a transformation that will make the process covariance stationary. 2016-05-25

Task 2

(16 points in total)

A) (8p) State the four stages of the Box-Jenkins methodology. For each stage, elaborate on the *purpose* of that specific stage, also give at least *one* example of a tool/method/statistical test that can be used in that specific stage.

Now, consider the following stochastic process

$$\phi(B)Y_t = \theta(B)e_t \tag{1}$$

where

$$\phi\left(B\right) = \left(1 - \phi B\right)$$

and

$$\theta\left(B\right) = 1.$$

 $e_t \sim N(0, \sigma^2)$ and $\phi \neq 0$.

B) (4p) Derive the expected value of the process.

C) (4p) Derive the variance of the process in (1). Be explicit in what assumptions, if any, you make to be able to derive this result.

2016-05-25

Task 3

(30 points in total) Consider the following model

$$Y_t = Y_{t-1} + e_t. (2)$$

where $e_t \sim N(0, \sigma^2)$.

Assume that the process started at Y_1 and that $Y_0 = 0$.

A) (4p) Derive the *expected value* of the process (2).

B) (4p) Derive the *variance* of the process (2).

C) (4p) Let us say that you have a realization of the process in (2) with 5000 (five thousand) observations, sketch how the SACF for that realization is likely to look.

D) (4p) Now, take second difference of the process above, that is

 $\nabla^2 Y_t$

where $\nabla = (1 - B)$. Derive the resulting process when the the original process above is differenced twice. Given the respresentation ARMA(p,q) what are the values of p and q for this resulting model?

Is is stationay? Is it invertible?

- E) (4p) Derive the expected value of the process $\nabla^2 Y_t$.
- F) (4p) Derive the variance of the process $\nabla^2 Y_t$.
- G) (4p) Derive the first autocorrelation (yes, autocorrelation) of the process $\nabla^2 Y_t$.

Task 4

(34 points in total)

In this task you will analyze a classic data set: The Nile flow data, yearly data from 1871 to 1970.

Please note that some or the output presented in this task may or may not be redundant for the purpose of solving all the subtasks. It is part of the task to know what output to use for the respective subtask.

A) (6p) Perform a unit root test, testing if the Nile flow data has a unit root, use significance level 5%. Document the test procedure as outlined in the test-template.

B) (6p) You try to estimate an AR(1) model to the Nile flow data. Perform a test to test if the first eight autocorrelations of the residuals from this model are simultaneously zero, against the alternative that at least one of them is not zero. Use significance level 5%. Document the test procedure as outlined in the test-template.

Given the result of this test, and this test *alone*, what would be your conclusion in terms of whether this model is a appropriate model or not for this data?

C) (6p) Now, a collegue of yours claims that it is well known since ancient times (and well documented in the literuature) that the Nile has specific flow for seven years, and then the flow changes (increase) the eight year.

Perform a test to test if the eight and only the eight autocorrelation of the residuals from the AR(1) model is significantly different from zero. Use significance level 5%. Document the test procedure as outlined in the test-template.

Given the result of this test, and this test *alone*, what would be your conclusion in terms of whether this model is a appropriate model or not for this data?

D) (8p) There are outputs and correlograms from three additional models in the figures. Do a diagnostic evaluation of these three models using the diagnostic tools that you have at your disposal given the output. There is no need to do any formal tests in this subtask. What/which of these models would be appropriate for capturing the systematic variation of the Nile flow? If more than one model would be considered appropriate, which one would be the *best* in your opinion, and why is that?

E) (4p) Given the general form of a model written as

$$\Phi(B) \phi(B) Y_t = \Theta(B) \theta(B) e_t.$$

For the model you find best, write out the lag polynomials (all of them) for your model of choice.

Time Series Exam

2016-05-25

F) (4p) Given the model that you specified the lag polynomials for in the previous subtask, do the algebra such that you in the end have the process on the form: Y_t alone on the left hand side, and Y_t not occuring on the right hand side. Also, the back shift operator B must not be anywhere in the expression.

Figure 5.1

Date: 05/22/16 Time: 13:56

Sample: 1 100

Included observations: 99						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 2 3 4 5 6 7	0.488 0.387 0.312 0.225 0.214 0.238 0.202	0.488 0.195 0.088 0.004 0.061 0.106 0.023	24.317 39.753 49.867 55.199 60.075 66.163 70.610	0.000 0.000 0.000 0.000 0.000 0.000 0.000
		8 9 10 11	0.271 0.127 0.084 0.216	0.138 -0.131 -0.051 0.204	78.677 80.463 81.263 86.577	0.000 0.000 0.000 0.000
	1 1 1 1 1 1	12 13 14 15	0.201 0.234 0.189 0.152	0.064 0.068 -0.058 -0.004	91.217 97.562 101.75 104.51	0.000 0.000 0.000 0.000
		16 17 18	0.177 0.145 0.188	0.065 0.022 0.097	108.29 110.87 115.23	0.000 0.000 0.000

Figure 5.2 Correlogram of Nile Flow (orignal data)

Null Hypothesis: NILE Exogenous: Constant Lag Length: 0 (Automa	_FLOW has a unit root atic - based on SIC, max	(lag=11)	
		t-Statistic	Prob.*
Augmented Dickey-Ful	ller test statistic	-5.740625	0.0000
Test critical values:	1% level	-3.498439	
	5% level	-2.891234	
	10% level	-2.582678	

10% level

*MacKinnon (1996) one-sided p-values.

Figure 5.3 ADF test on Nile Flow (orignal) data

Dependent Variable: NIL Method: Least Squares Date: 05/22/16 Time: 1- Sample (adjusted): 2 99 Included observations: 9 Convergence achieved a	.E_FLOW 4:05 18 after adjusti after 3 iteration	ments Is		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1)	910.6635 0.493963	29.28521 0.088150	31.09636 5.603646	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.246473 0.238624 146.5184 2060894. -626.7864 31.40085 0.000000	Mean depend S.D. depende Akaike info crii Schwarz criter Hannan-Quini Durbin-Watso	ent var nt var terion ion n criter. n stat	914.8469 167.9162 12.83238 12.88513 12.85371 2.182517
Inverted AR Roots	.49			

Figure 5.4 Estimation output for an AR(1)estimated on the Nile Flow data.

Date: 05/22/16 Time: 14:08 Sample: 1 100 Included observations: 98 Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	10	1	-0.094	-0.094	0.8887	
י 🖬 י	ן ון ו	2	0.089	0.081	1.6991	0.192
1 D 1	ים ו	3	0.112	0.130	2.9989	0.223
111	I]I	4	0.009	0.024	3.0067	0.391
1 b 1	ן וים ו	5	0.084	0.068	3.7583	0.440
י בי	ום י	6	0.085	0.085	4.5213	0.477
10	וםי	7	-0.047	-0.050	4.7622	0.575
· 🗖		8	0.236	0.202	10.816	0.147
111		9	-0.019	0.010	10.856	0.210
יםי	יםי	10	-0.093	-0.139	11.819	0.224
· 🗖	ים י	11	0.156	0.090	14.561	0.149
1] 1	ן יםי	12	0.036	0.078	14.707	0.196
י 🗖 י	ים ו	13	0.121	0.116	16.389	0.174
י 🛛 י	ן ון ו	14	0.066	0.031	16.896	0.204
111	1 1 1	15	-0.022	-0.019	16.952	0.259
י ב ו	ן וףי	16	0.130	0.056	18.971	0.215
111	ן ון ו	17	-0.020	-0.042	19.021	0.268

Figure 5.5 Correlogram of residuals from an AR(1) fitted on the Nile Flow data.

Dependent Variable: NILE_FLOW
Method: Least Squares
Date: 05/22/16 Time: 14:03
Sample (adjusted): 3 99
Included observations: 97 after adjustments
Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2)	908.5152 0.401059 0.202085	37.16032 0.101011 0.100711	24.44853 3.970455 2.006572	0.0000 0.0001 0.0477
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.278621 0.263272 144.8139 1971280. -618.7319 18.15297 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critel Hannan-Quin Durbin-Watsc	914.3505 168.7162 12.81922 12.89885 12.85141 2.000484	
Inverted AR Roots	.69	29		

Figure 5.6 Estimation output from an AR(2) estimated on Nile Flow data

Date: 05/22/16 Time: 14:10 Sample: 1 100 Included observations: 97 Q-statistic probabilities adjusted for 2 ARMA terms

	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-	111	I I	1	-0.014	-0.014	0.0202	
	יםי	ן ום י	2	-0.072	-0.072	0.5462	
	יםי	ן ון ו	3	0.051	0.049	0.8106	0.368
	i 🖬 i	ן ון ו	4	-0.053	-0.057	1.0984	0.577
	יםי	ון ו	5	0.057	0.064	1.4368	0.697
	יםי	ן ון ו	6	0.055	0.046	1.7529	0.781
	10	1 10	7	-0.042	-0.027	1.9403	0.857
	· 🗖		8	0.216	0.218	6.9660	0.324
	יםי	ן ון ו	9	-0.053	-0.059	7.2682	0.401
	. ⊡ .	יםי	10	-0.144	-0.112	9.5571	0.297
	· 🗖 ·	1 1 🗐 1	11	0.118	0.090	11.115	0.268
	יםי	ן ים י	12	0.057	0.067	11.488	0.321
	י 🗗 י	ı <u> </u> ı	13	0.106	0.113	12.767	0.309
	י 🏚 י	1 1	14	0.052	0.024	13.077	0.364
	i di i	1 1	15	-0.050	-0.001	13.372	0.420
	1 þ 1	ן וים ו	16	0.088	0.053	14.296	0.428
	1 ()	1 11	17	-0.013	-0.015	14.315	0.502

Figure 5.7 Correlogram of residuals from an AR(2) fitted on Nile flow data.

11

Dependent Variable: NILE_FLOW Method: Least Squares Date: 05/22/16 Time: 14:12 Sample (adjusted): 10 99 Included observations: 90 after adjustments Convergence achieved after 4 iterations

Variable	Coefficient	Std. Error t-Statistic		Prob.
C AR(1) SAR(8)	882.8571 0.446908 0.261188	34.65853 0.095723 0.096838	0.0000 0.0000 0.0084	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.275097 0.258432 133.0532 1540174. -566.3463 16.50802 0.000001	Mean depen S.D. depend Akaike info c Schwarz crite Hannan-Quin Durbin-Wats	895.6556 154.5076 12.65214 12.73547 12.68574 2.153780	
Inverted AR Roots	.85 .00+.85i 85	.6060i 0085i	.60+.60i 6060i	.45 6060i

Figure 5.8 Estimation out put from a $SARMA(1,0)^*(1,0)_8$ model estimated on Nile flow data.

=

Date: 05/22/16 Time: 14:17
Sample: 1 100
Included observations: 90
Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı di i	ığı	1	-0.078	-0.078	0.5658	
· 🗖 ·		2	0.154	0.149	2.7942	
1 D 1		3	0.088	0.113	3.5379	0.060
1 🗖 1		4	-0.106	-0.119	4.6193	0.099
10	יםי	5	-0.031	-0.084	4.7149	0.194
1 🗐 1		6	0.085	0.110	5.4209	0.247
101	1 1	7	-0.055	0.001	5.7212	0.334
111	יםי	8	-0.020	-0.068	5.7609	0.451
1 🚺 1	יםי	9	-0.046	-0.078	5.9741	0.543
1 🗖 1	יםי	10	-0.134	-0.107	7.8383	0.449
1 j 1		11	0.045	0.067	8.0540	0.529
1 j 1	ון ו	12	0.021	0.070	8.1024	0.619
1 D 1		13	0.086	0.090	8.8976	0.631
1 j 1		14	0.020	-0.027	8.9412	0.708
10		15	-0.093	-0.144	9.9013	0.702
1 1	1 1	16	-0.006	-0.007	9.9052	0.769
	1 1 1	17	-0.101	-0.051	11.056	0.749
1 b 1		18	0.062	0.079	11.494	0.778
1 1		19	-0.016	-0.029	11.523	0.828
	ו הו	20	-0.025	-0.069	11 596	0 867

Figure 5.9 Correlogram of residuals from a $SARMA(1,0)^*(1,0)_8$ model estimated on Nile flow data.

Dependent Variable: NILE_FLOW
Method: Least Squares
Date: 05/22/16 Time: 14:15
Sample (adjusted): 2 99
Included observations: 98 after adjustments
Convergence achieved after 6 iterations
MA Backcast: -6 1

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) MA(8)	912.2783 0.490381 0.294315	35.9608125.368680.0893825.4863600.0984282.990157		0.0000 0.0000 0.0036
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.299466 0.284718 142.0140 1915958. -623.2132 20.30544 0.000000	Mean depen S.D. depend Akaike info o Schwarz crit Hannan-Qui Durbin-Wats	914.8469 167.9162 12.77986 12.85899 12.81187 2.173234	
Inverted AR Roots Inverted MA Roots	.49 .79+.33i 3379i	.7933i 33+.79i	.33+.79i 7933i	.3379i 79+.33i

Figure 5.10 Estimation output from a $SARMA(1,0)^*(0,1)_8$ model estimated on the Nile flow data.

14

Date: 05/22/16 Time: 14:20 Sample: 1 100 Included observations: 98 Q-statistic probabilities adjusted for 2 ARMA terms							
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob		
		1 -0.088	-0.088	0.7897			

ı 🖬 i		1	-0.088	-0.088	0.7897	
ı 🗖 i	1 🔲 1	2	0.119	0.112	2.2270	
1 🛛 1	1 🗐 1	3	0.064	0.085	2.6482	0.104
1 1 1	1 1	4	-0.012	-0.013	2.6627	0.264
1 🛛 1	1 1	5	0.035	0.016	2.7925	0.425
1 🛛 1	ון ו	6	0.035	0.038	2.9261	0.570
111	111	7	-0.021	-0.020	2.9757	0.704
101	וםי	8	-0.063	-0.081	3.4018	0.757
1 1 1	1 1	9	0.015	0.003	3.4269	0.843
		10	-0.160	-0.143	6.2792	0.616
ı 🗖 i	i 🗐 i	11	0.144	0.130	8.6268	0.472
1 1 1	1 🛛 1	12	0.024	0.083	8.6906	0.562
1 D 1	ו 🗖 י	13	0.111	0.125	10.121	0.520
1 🛛 1	ון ו	14	0.064	0.058	10.600	0.563
1 1	10	15	-0.021	-0.039	10.653	0.640
· 🗩	i 🗖 i	16	0.172	0.146	14.178	0.437
101	101	17	-0.048	-0.050	14.454	0.491
ı 🗖 i	ו ו	18	0.128	0.073	16.470	0.421
1 1	1 1	19	-0.008	-0.003	16.477	0.490
1 1 1	1 1	20	0.020	-0.007	16.527	0.556

Figure 5.11 Correlogram from a $SARMA(1,0)^*(0,1)_8$ model estimated on the Nile flow data.